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MOTIVATION

• Ice shelves can buttress their ice

streams

• Weaker ice shelves will buttress less

• Thinning and upstream migration of

the grounding line may result
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GOAL & APPROACH

Goal : Assess the sensitivity of

stream/shelf systems to a change in

buttressing

Approach : Use a simple model to

examine how an initially steady-state

system responds to a loss of

buttressing
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SNEAK PREVIEW

• Ice shelves do matter, at least for

"PIG-like" systems

• We have a nice tool ideal for

reconnassance style studies
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MODEL OVERVIEW
x=1x=0

stream oceanshelf

flow

rock

Model Components

• diagnostic momentum balance

• prognostic mass balance
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MOMENTUM BALANCE

• 1-d flowline, nondimensionalized, FEM treatment

• derived similarly to the plan-view eqn’s of MacAyeal
(1989)

• treats basal drag and lateral drag as boundary layer
phenom.

• includes long. dev. stress

• appropriate for thin, channelized, free-surface, ’plug’
flow

• buttressing applied as a boundary condition
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MOMENTUM BALANCE cont’d
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• A is a measure of the importance of ice thickness gradients

• Gb measures the importance of basal drag

• Gs measures the importance of side drag
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MOMENTUM BALANCE cont’d

Boundary conditions:

• Upstream (x = 0) boundary condition u(0, t) = u0

• Downstream, or terminal, (x = 1) boundary condition
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f is the buttressing parameter, such that

? f = 1 ; fully buttressed condition

? f = 0 ; freely-spreading condition = unbuttressed
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MASS BALANCE

• 1-d, time-dependent, non-dimensional

• derived from depth-integrated continuity

• neglects accumulation & lateral variations in thickness
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thickening rate = flux convergence

Boundary condition:

• fixed upstream thickness, h(0, t) = h0
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EXPERIMENTAL APPROACH

• Start with a system which is at

steady-state with 50% buttressing

(f=0.5)

• Remove buttressing (f=0) and watch

the system adjust
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EXPERIMENTS

• Performed a reference experiment

using "PIG-like" numbers

• Many sensitivity experiments were

conducted (e.g., 20% incr. in Gs, or

20% decr. A)
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PIG GEOMETRY

From Rignot et al., Ann. Glaciol., 39, in press
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PIG-LIKE SCALES

Scale, constant or parameter Value

H 1 km

Lx 100 km

Ly 20 km

U 7.6 × 10−5 ms−1 ≈ 2.4 km/year

Bi 2 × 108 Pa s1/3

τb 0.73 bar

τy 5.5 bar

T = Lx/U 1.3 × 109 s ≈ 41 years

A ≡
ρigH

Bi( U
Lx

)
1

n

= 50 Gb ≡ τbLx

HBi( U
Lx

)
1

n

= 40 Gs ≡
τyLx

LyBi( U
Lx

)
1

n

= 15
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EXPERIMENTS

experiment Gs β Gb A h0 u0

reference 15 0.3 40 50 1.9 0.53

+Gs 18

-β 0.24

+Gb 48

+A 60

-A 40

+h0 2.3

+u0 0.63
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RESULTS: reference
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RESULTS: reference, cont’d
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RESULTS: reference, cont’d
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SENSITIVITY RESULTS

experiment g.l. retreat init’l VAF final VAF VAF loss

(% of init’l)

reference 0.18 0.34 0.23 0.11 (33%)

+20% in Gs 0.14 0.37 0.27 0.10 (27%)

-20% in β 0.17 0.35 0.24 0.11 (32%)

+20% in Gb 0.17 0.38 0.26 0.12 (32%)

+20% in A 0.22 0.21 0.14 0.11 (43%)

-20% in A 0.08 0.43 0.35 0.09 (20%)

+20% in h0 0.18 0.34 0.23 0.12 (34%)

+20% in u0 0.14 0.39 0.28 0.11 (28%)
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CONCLUSIONS
• Loss of buttressing results in notable g.l.

retreat and VAF loss (18 km & ∼300 km3,

respectively, using PIG scales)

• Thinning extends far upstream

• ↑ buttressing sensitivity for ↓ side drag and ↑

driving stress (↑ basal drag)

• Siple Coast ice streams may be vulnerable

• Results are likely conservative
? fixed upstream thickness

? no sub-ice-shelf melting
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FUTURE WORK

• Adaptive meshing → better efficiency

• Include dynamic accumulation/melting

• Free the upstream boundary

• Perform new, "improved", PIG-like

experiments

• Perform Siple experiments
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